《面向对象程序设计(双语)》课程实验教学大纲

一、课程基本信息

课程代码：16073504

课程名称：面向对象程序设计(双语)

英文名称: Object-Oriented Programming

实验总学时：22

适用专业：计算机科学技术专业
课程类别：专业课

先修课程：程序设计

2、 实验教学的总体目的和要求

1、对学生的要求

(1) 具有C语言程序设计基础；

(2) 实验课程不仅需要课上投入，课后需要有一定的练习时间；

(3) 能够根据规范撰写实验报告；

2、对教师的要求

(1) 合理设计实验项目；

(2) 根据实验内容有效控制学生的实验过程；

(3) 在实验指导过程中，根据学生个性问题提供指导，并且总结共性问题，集中指导；

3、对实验条件的要求

(1) 具有一定性能的电脑和通畅的网络环境；

(2) 安装JDK和Eclipse

3、 实验教学内容

实验项目一　　

实验名称：Introduction

实验内容：

1． Printing Strings

Write a Java program that prints the message, “Roses are red”. Your program will be a class definition containing a main

method—see the Lincoln example in Listing 1.1 of the text if you need guidance. Remember the following:

􀀀The name of the class must match the name of the file (but without the .java extension).

􀀀The main method must be inside the class definition (between the first { and the last}).

􀀀The statement that prints the message must be inside main.

Compile and run your program. When it works correctly, modify it so that it prints the entire poem:

Roses are red

Violets are blue

Sugar is sweet
And so are you!
2． Documentation
File Count.java contains a Java program that counts from 1 to 5 in English, French, and Spanish. Save this file to your

directory and compile and run it to see what it does. Then modify it as follows:

(1) Use // style comments to add a comment header at the top of the file that includes the name of the program, your name,and a brief description of what the program does, neatly formatted. Include a delimiter line (e.g., all stars) at the beginning and end of the header.

(2) Add a comment before each println that indicates what language the next line is in. Experiment with leaving a blank line before each of these comment lines (in the program itself, not the output). Is the program easier to read with or without these blank lines?

(3) Remove one of the slashes from one of your comment lines and recompile the program, so one of the comments starts with a single /. What error do you get? Put the slash back in.

(4) Try putting a comment within a comment, so that a // appears after the initial // on a comment line. Does this cause problems?

(5) Consult the documentation guidelines in Appendix F of the text. Have you violated any of them? List two things that you could imagine yourself or someone else doing in commenting this program that these guidelines discourage.

3． Identifiers

File Simple.java contains a simple Java program that prints a message. The identifier that represents the name of this program is Simple, but we could have chosen a different identifier subject to certain rules and conventions. An identifier may contain any combination of letters, digits, the underscore character, and the dollar sign, but cannot begin with a digit. Furthermore, by

convention, identifiers that represent class names (which includes program names) begin with a capital letter. This means that you won’t get an error if your program name doesn’t start with a capital letter (as long as what it starts with is legal for an identifier), but it’s better style if you do. This may seem arbitrary now, but later when you have lots of identifiers in your programs you’ll see the benefit. Of course, the program name should always be reasonably descriptive of the program.

Indicate whether each name below is a legal identifier, and if so, whether it is a good choice to name this program. If the answer to either question is no, explain why. Then save Simple.java to your directory and check your answers by modifying

it to try each—note that you will have to change the file name each time to match the program name or you will always get an error.

(1) simple (Why do you even have to change the name of the file in this case?)

(2) SimpleProgram

(3) 1 Simple

(4) _Simple_

(5) *Simple*

(6) $123_45

(7) Simple!

4． Syntax errors

When you make syntax errors in your program the compiler gives error messages and does not create the bytecode file. It saves time and frustration to learn what some of these messages are and what they mean. Unfortunately, at this stage in the game many of the messages will not be meaningful except to let you know where the first error occurred. Your only choice is

to carefully study your program to find the error. In the following you will introduce a few typical errors into a simple program and examine the error messages.

(1) Type the following program into a file called Hello.java. (This is the traditional first program a computer scientist writes in a new language.)

Compile and run the program to see what it does. Then make the changes below, answering the questions as you go.
(2) Class name different from file name. Delete one l (el) from the name of the class (so the first non-comment line is public class Helo), save the program, and recompile it. What was the error message?
(3) Misspelling inside string. Correct the mistake above, then delete one l from the Hello in the message to be printed(inside the quotation marks). Save the program and recompile it. There is no error message—why not? Now run the program. What has changed?
(4) No ending quotation mark in a string literal. Correct the spelling in the string, then delete the ending quotation mark enclosing the string Hello, World!. Save the program and recompile it. What error message(s) do you get?
(5) No beginning quotation mark in a string literal. Put the ending quotation mark back, then take out the beginning one. Save and recompile. How many errors this time? Lots, even though there is really only one error. When you get lots of errors always concentrate on finding the first one listed!! Often fixing that one will fix the rest. After we study variables the error messages that came up this time will make more sense.
(6) No semicolon after a statement. Fix the last error (put the quotation mark back). Now remove the semicolon at the end of the line that prints the message. Save the program and recompile it. What error message(s) do you get?
实验性质：验证性

实验学时：2

实验目的与要求：

(1) 掌握输出字符串；

(2) 熟悉注释方式以及合法的标识符定义；

(3) 能够识别基本的语法错误；

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

(1) 标识符大小写敏感问题

(2) 如何调试错误？

融入点：通过立法监督强调编码的规范性

实验项目二

实验名称：Data and Expressions

实验内容：

1． String literals

The goal in this exercise is to develop a program that will print out a list of student names together with other information for each. The tab character (an escape sequence) is helpful in getting the list to line up nicely. A program with only two names is in the file Names.java.
(1) Save Names.java to your directory. Compile and run it to see how it works.
(2) Modify the program so that your name and hometown and the name and hometown of at least two classmates sitting near you in lab also are printed. Save, compile and run the program. Make sure the columns line up.
(3) Modify the program to add a third column with the intended major of each person (assume Sally's major is Computer Science and Alexander's major is Math). Be sure to add a label at the top of the third column and be sure everything is lined up (use tab characters!).
2． String Concatenation

Write a Java program that prints a table with a list of at least 5 students together with their grades earned (lab points, bonus

points, and the total) in the format below.

///////////////////\\\\\\\\\\\\\\\\\\\

== Student Points ==

\\\\\\\\\\\\\\\\\\\///////////////////

Name Lab Bonus Total

---- --- ----- -----

Joe 43 7 50

William 50 8 58

Mary Sue 39 10 49

The requirements for the program are as follows:

(1) Print the border on the top as illustrated (using the slash and backslash characters).
(2) Use tab characters to get your columns aligned and you must use the + operator both for addition and string concatenation.
(3) Make up your own student names and points—the ones shown are just for illustration purposes. You need 5 names.
3． Escape sequences

(1) Observing the Behavior of + To see the behavior of + in different settings do the following:

a. Study the program below, which is in file PlusTest.java.

b. Save PlusTest.java to your directory.

c. Compile and run the program. For each of the last three output statements (the ones dealing with 8 plus 5) write down what was printed. Now for each explain why the computer printed what it did given that the following rules are used for +. Write out complete explanations.

If both operands are numbers + is treated as ordinary addition. (NOTE: in the expression a + b the a and b are called the operands.)
If at least one operand is a string the other operand is converted to a string and + is the concatenation operator.
If an expression contains more than one operation expressions inside parentheses are evaluated first. If there are no parentheses the expression is evaluated left to right.

d. The statement about when the computer was invented is too scrunched up. How should that be fixed?
(2) Writing Your Own Program With + Now write a complete Java program that prints out the following sentence:

Ten robins plus 13 canaries is 23 birds.

Your program must use only one statement that invokes the println method. It must use the + operator both to do arithmetic and string concatenation.
4． Variables

Prelab Excercises

5． Arithmetic Expressions

The program LabGrade.java is supposed to compute the lab grade for a student. To do this it gets as input the number of points the student earned on the prelab assignment and the maximum number of points the student could have earned; the number of points earned on the lab itself and the maximum number of points; the number of points earned on the postlab assignment and the maximum number of points. The lab grade is computed as described above: the in-class and out-of-class grades (in percent) are computed separately then a weighted average of these is computed. The program currently assumes the out-of-class work counts 40% and the in-class counts 60%. Do the following:

(1) First carefully hand trace the program assuming the input stream contains the values 17, 20, 23, 25, 12, 15. Trace the program exactly as it is written (it is not correct but it will compile and run so the computer would not know it isn't correct). Fill in the answers to the following questions:

a. Show exactly how the computer would execute the assignment statement that computes the out of class average for this set of input. Show how the expression will be evaluated (the order in which the operations are performed) and what the result will be.

b. Show how the computer would execute the assignment statement that computes the
in-class average. What will the result be?

c. Show how the computer would execute the assignment statement that computes the lab
grade.
(2) Now run the program, typing in the input you used in your trace. Compare your answers to the output. Clearly the output is incorrect! Correct the program. This involves writing the expressions to do calculations correctly. The correct answers for the given input should be an out of class average of 82.857 (the student earned 29 points out of a possible 35 which is approximately 82.857%), an in-class average of 92 (23 points out of 25), and a lab grade of 88.34 (40% of 82.857 plus 60% of 92).
(3) Modify the program to make the weights for the two components of the grade variable rather than the constants 0.4 and 0.6. To do this, you need to do four things:

a. Change the declarations so the weights (IN_WEIGHT and OUT WEIGHT) are variables rather than constants. Note that you should also change their names from all capital letters (the convention for constants) to lowercase letters with capitals starting new words (the convention for variables). So IN_WEIGHT should become inWeight. Of course, you'll also have to change it where it's used in the program.

b. In the input section, add statements that will prompt the user for the weight (in decimal
form—for example .4 for 40%) to be assigned to the in-class work, then read the input. Note that your prompt should explain to the user that the weight is expected to be in decimal form.

c. In the section that calculates the labGrade add an assignment statement that calculates the weight to be assigned to the out of class work (this will be 1 minus the in-class weight).

Compile and run your program to make sure it is correct.
6． Input using the Scanner class

In this exercise you will use this algorithm to write a program that converts a base 10 number to a 4-digit number in another base (you don't know enough programming yet to be able to convert any size number). The base 10 number and the new base(between 2 and 9) will be input to the program. The start of the program is in the file BaseConvert.java. Save this file to your

directory, then modify it one step at a time as follows:

(1) The program will only work correctly for base 10 numbers that fit in 4 digits in the new base. We know that in base 2 the maximum unsigned integer that will fit in 4 bits is 11112 which equals 15 in base 10 (or 24 – 1). In base 8, the maximum number is 77778 which equals 4095 in base 10 (or 84 – 1). In general, the maximum base 10 number that fits in 4 base b digits is b4 – 1. Add an assignment statement to the program to compute this value for the base that is input and assign it to the variable maxNumber. Add a statement that prints out the result (appropriately labeled). Compile and run the program to make sure it is correct so far.

2. Now add the code to do the conversion. The comments below guide you through the
calculations—replace them with the appropriate Java statements.

3. So far the program does not print out the answer. Recall that the answer is the sequence of
remainders written in reverse order— note that this requires concatenating the four digits that have been computed. Since they are each integers, if we just add them the computer will perform arithmetic instead of concatenation. So, we will use a variable of type String. Note near the top of the program a variable named baseBNum has been declared as an object of type String and initialized to an empty string. Add statements to the program to concatenate the digits in the new base to baseBNum and then print the answer. Compile and run your program. Test it using the following values: Enter 2 for the base and 13 for the base 10 number—the program should print 1101 as the base 2 value; enter 8 for the base and 1878 for the number—the program should print 3526 for the base 8 value; enter 3for the base and 50 for the number—the program should print 1212.
实验性质：验证性

实验学时：2

实验目的与要求：

(1) 掌握字符串的连接，转义符的使用；

(2) 掌握变量，常量的定义和使用；

(3) 掌握赋值语句和算术表达式的使用；

(4) 学习使用Scanner类输入数据；

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

(1) String中“+”的使用场景；

(2) Scanner如何使用？

融入点：表达式的优先级问题可以引申出始终把人民放在心中最高位置这一观点。

实验项目三

实验名称：Using Classes and Objects

实验内容：

1. String class

The file StringManips.java contains this program. Save the file to your directory and compile and run it. Study the output and make sure you understand the relationship between the code and what is printed. Now modify the file as follows:

(1) Declare a variable of type String named middle3 (put your declaration with the other declarations near the top of the program) and use an assignment statement and the substring method to assign middle3 the substring consisting of the middle three characters of phrase (the character at the middle index together with the character to the left of that and the one to the right - use variables, not the literal indices for this particular string). Add a println statement to print out the result. Save, compile, and run to test what you have done so far.
(2) Add an assignment statement to replace all blank characters in switchedPhrase with an asterisk (*). The result should be stored back in switchedPhrase (so switchedPhrase is actually changed). (Do not add another print—place your statement in the program so that this new value of switchedPhrase will be the one printed in the current println statement.) Save,compile, and run your program.
(3) Declare two new variables city and state of type String. Add statements to the program to prompt the user to enter their hometown—the city and the state. Read in the results using the appropriate Scanner class method - you will need to have the user enter city and state on separate lines. Then using String class methods create and print a new string that consists of the state name (all in uppercase letters) followed by the city name (all in lowercase letters) followed again by the state name (uppercase). So, if the user enters Lilesville for the city and North Carolina for the state, the program should create and print the string

NORTH CAROLINAlilesvilleNORTH CAROLINA
2. Random class

Write a complete Java program that simulates the rolling of a pair of dice. For each die in the pair, the program should generate a random number between 1 and 6 (inclusive). It should print out the result of the roll for each die and the total roll(the sum of the two dice), all appropriately labeled. You must use the Random class. The RandomNumbers program in listing3.2 of the text may be helpful.
3. Math class

The file Distance.java contains an incomplete program to compute the distance between two points. Recall that the distance between the two points (x1, y1) and (x2, y2) is computed by taking the square root of the quantity (x1 - x2)2 + (y1 - y2)2. The program already has code to get the two points as input. You need to add an assignment statement to compute the distance and then a print statement to print it out (appropriately labeled). Test your program using the following data: The distance between the points (3, 17) and (8, 10) is 8.6023... (lots more digits printed); the distance between (-33,49) and (-9, -15) is 68.352.…
4. Wrapper class

Write a program IntWrapper that uses the constants and methods of the Integer class (page 140 for a short list, pages 819-820 for a complete list) to perform the following tasks. Be sure to clearly label your output and test your code for each task before proceding.

(1) Prompt for and read in an integer, then print the binary, octal and hexadecimal representations of that integer.
(2) Print the maximum and minimum possible Java integer values. Use the constants in the Integer class that hold these values — don't type in the numbers themselves. Note that these constants are static (see the description on page 140 and the signature on page 819).
(3) Prompt the user to enter two decimal integers, one per line. Use the next method of the Scanner class to read each of them in. (The next method returns a String so you need to store the values read in String variables, which may seem strange.) Now convert the strings to ints (use the appropriate method of the Integer class to do this), add them together, and print the sum.
5． Panels

The program NestedPanels.java is from Listing 3.8 of the text. Save the program to your directory and do the following:

(1) Compile and run the program. Experiment with resizing the frame and observe the effect on the components.
(2) Modify the program by adding a third subpanel that is twice as wide, but the same height, as the other two subpanels. Choose your own label and color for the subpanel (the color should not be red, green, or blue). Add the panel to the primary panel after the other two panels.
(3) Compile and run the modified program. Again, experiment with resizing the frame and observe the effect on the components.
(4) Now add a statement to the program to set the preferred size of the primary panel to 320 by 260. (What would be the purpose of this?). Compile and run the program to see if anything changed.
(5) Now add another panel with background color blue and size 320 by 20. Add a "My Panels" label to this panel and then add this panel to the primary panel before adding the other panels. Compile and run the program. What was the effect of this panel?
实验性质：设计性

实验学时：2

实验目的与要求：

(1) 掌握String,Math,Random,Wrapper class的使用；

(2) 掌握GUI中的Panel组合实现；

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

(1) 实例化和方法调用

(2) GUI界面实现框架

融入点：谈党和党员的关系，看类和对象的关系

实验项目四

实验名称：Writing Classes

实验内容：

1. Classes and methods

(1) File Account.java contains a partial definition for a class representing a bank account. Save it to your directory and study it to see what methods it contains. Then complete the Account class as described below. Note that you won’t be able to test your methods until you write ManageAccounts in question #2.

a. Fill in the code for method toString, which should return a string containing the name, account number, and balance for the account.

b. Fill in the code for method chargeFee, which should deduct a service fee from the account.

c. Modify chargeFee so that instead of returning void, it returns the new balance. Note that you will have to make changes in two places.

d. Fill in the code for method changeName which takes a string as a parameter and changes the name on the account to be that string.

(2) File ManageAccounts.java contains a shell program that uses the Account class above. Save it to your directory, and complete it as indicated by the comments.

(3) Modify ManageAccounts so that it prints the balance after the calls to chargeFees. Instead of using the getBalance method like you did after the deposit and withdrawal, use the balance that is returned from the chargeFees method. You can either store it in a variable and then print the value of the variable, or embed the method call in a println statement.
2. GUIs: Buttons and TextFields

Files VoteCounter.java and VoteCounterPanel.java contain slightly modified versions of PushCounter.java and PushCounterPanel.java in listings 4.10 and 4.11 of the text. As in the text the program counts the number of times the button is pushed; however, it assumes (“pretends”) each push is a vote for Joe so the button and variables have been renamed appropriately.

(1) Compile the program, then run it to see how it works.
(2) Modify the program so that there are two candidates to vote for—Joe and Sam. To do this you need to do the following:

a. Add variables for Sam—a vote counter, a button, and a label.

b. Add a new inner class named SamButtonListener to listen for clicks on the button for Sam. Instantiate an instance of the class when adding the ActionListener to the button for Sam.

c. Add the button and label for Sam to the panel.

(3) Compile and run the program.
实验性质：设计性

实验学时：2

实验目的与要求：

(1) 掌握设计类的方法；

(2) 掌握GUI界面中Button，TextField组件的使用；

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

(1) 如何设计类，如何使用类？

(2) GUI中组件的使用模式？

实验项目五

实验名称：Conditionals and Loops(1)

实验内容：

1．The if statement

File Salary.java contains most of a program that takes as input an employee’s salary and a rating of the employee’s performance and computes the raise for the employee. This is similar to question #3 in the pre-lab, except that the performance rating here is being entered as a String—the three possible ratings are “Excellent”, “Good”, and “Poor”. As in the pre-lab, an employee who is rated excellent will receive a 6% raise, one rated good will receive a 4% raise, and one rated poor will receive a 1.5% raise.

Add the if... else... statements to program Salary to make it run as described above. Note that you will have to use the equals method of the String class (not the relational operator ==) to compare two strings (see Section 5.3, Comparing Data).
2. The while statement

The program in LoveCS.java prints “I love Computer Science!!” 10 times. Copy it to your directory and compile and run it to see how it works. Then modify it as follows:

(1) Instead of using constant LIMIT, ask the user how many times the message should be printed. You will need to declare a variable to store the user’s response and use that variable to control the loop. (Remember that all caps is used only for constants!)
(2) Number each line in the output, and add a message at the end of the loop that says how many times the message was printed. So if the user enters 3, your program should print this:

1 I love Computer Science!!

2 I love Computer Science!!

3 I love Computer Science!!

Printed this message 3 times.

(3) If the message is printed N times, compute and print the sum of the numbers from 1 to N. So for the example above, the last line would now read:

Printed this message 3 times. The sum of the numbers from 1 to 3 is 6.

Note that you will need to add a variable to hold the sum.
3. Iterator & Reading Text Files

The file BaseballStats.java contains the skeleton of a program thats reads and processes a file in this format. Study the program and note that three Scanner objects are declared.

• One scanner (scan) is used to read in a file name from standard input.

• The file name is then used to create a scanner (fileScan) to operate on that file.

• A third scanner (lineScan) will be used to parse each line in the file.

Also note that the main method throws an IOException. This is needed in case there is a problem opening the file.

Complete the program as follows:

(1) First add a while loop that reads each line in the file and prints out each part (name, then each at bat, without the commas) in a way similar to the URLDissector program in Listing 5.10 of the text. In particular inside the loop you need to

a. read the next line from the file

b. create a comma delimited scanner (lineScan) to parse the line

c. read and print the name of the player, and finally,

d. have a loop that prints each at bat code.

(2) Compile and run the program to be sure it works.
(3) Now modify the inner loop that parses a line in the file so that instead of printing each part it counts
(separately) the number of hits, outs, walks, and sacrifices. Each of these summary statistics, as well as the batting average, should be printed for each player. Recall that the batting average is the number of hits divided by the total number of hits and outs.

(5) Test the program on the file stats.dat and stats2.dat .
4. ArrayList Class

In this exercise you will implement a shopping cart using the ArrayList class. The file Item.java contains the definition of a class named Item that models an item one would purchase (this class was used in an earlier lab). An item has a name, price, and quantity (the quantity purchased). The file Shop.java is an incomplete program that models shopping.

(1) Complete Shop.java as follows:

a. Declare and instantiate a variable cart to be an empty ArrayList.

b. Fill in the statements in the loop to add an item to the cart and to print the cart contents (using the default toString in the ArrayList class). Comments in the code indicate where these statements go.

c. Compile your program and run it.

(2) You should have observed two problems with using the default printing for the cart object: the output doesn’t look very good and the total price of the goods in the cart is not computed or printed. Modify the program to correct these problems by replacing the print statement with a loop that does the following:

a. gets each item from the cart and prints the item

b. computes the total price of the items in the cart (you need to use the getPrice and getQuantity methods of the Item class). The total price should be printed after the loop.

(3) Compile and run your program.
5. Checkboxes&Radio Buttons

The files StyleOptions.java and StyleOptionsPanel.java are from Listings “5.14 and 5.15” of the text (with a couple of slight changes—an instance variable fontSize is used rather than the literal 36 for font size and the variable style is an instance variable rather than local to the itemStateChanged method). The program demonstrates checkboxes and ItemListeners. In this exercise you will add a set of three radio buttons to let the user choose among three font sizes. The method of adding the radio buttons will be very similar to that in the QuoteOptionsPanel class (Listing 5.17 of the text). Before modifying the

program compile and run the current version to see how it works and study the QuoteOptionsPanel example.

Do the following to add the radio buttons to the panel:

(1) Declare three objects small, medium, and large of type JRadioButton.
(2) Instantiate the button objects labeling them “Small Font,” “Medium Font,” “Large Font.” Initialize the large font button to true. Set the background color of the buttons to cyan.
(3) Instantiate a button group object and add the buttons to it.
(4) Radio buttons produce action events so you need an ActionListener to listen for radio button clicks. The code you need to add to actionPerformed will be similar to that in the QuoteListener in Listing 5.17. In this case you need to set the fontSize variable (use 12 for small, 24 for medium, and 36 for large) in the if statement, then call the setFont method to set the font for the saying object. (Note: Instead of adding an ActionListener you could use the current ItemListener and
add code to check to see if the source of the event was a radio button.)
(5) In StyleOptionsPanel() add the ItemListener object to each button and add each button to the
Panel.

(6) Compile and run the program. Note that as the font size changes the checkboxes and buttons re-arrange themselves in the panel. You will learn how to control layout later in the course.
实验性质：设计性

实验学时：2

实验目的与要求：

(1) 掌握if，while语句；

(2) 掌握Iterator和ArrayList类的使用；

(3) 掌握checkbox和Radiobutton组件的应用；

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

(1) 循环和迭代器；

(2) ArrayList怎么用？

(3) 事件处理机制的通用模式？

实验项目六

实验名称：Conditonals and Loops(2)

实验内容：

1. The switch statement

As activity directory at Lake LazyDays Resort, it is your job to suggest appropriate activities to guests based on the weather:

temp >= 80: swimming

60 <= temp < 80: tennis

40 <= temp < 60: golf

temp < 40: skiing

(1) Write a program that prompts the user for a temperature, then prints out the activity appropriate for that temperature. Use a cascading if, and be sure that your conditions are no more complex than necessary.
(2) Modify your program so that if the temperature is greater than 95 or less than 20, it prints “Visit our shops!”. (Hint: Use a boolean operator in your condition.) For other temperatures print the activity as before.
2. The do statement

It’s almost election day and the election officials need a program to help tally election results. There are two candidates for office—Polly Tichen and Ernest Orator. The program’s job is to take as input the number of votes each candidate received in each voting precinct and find the total number of votes for each. The program should print out the final tally for each candidate—both the total number of votes each received and the percent of votes each received. Clearly a loop is needed.Each iteration of the loop is responsible for reading in the votes from a single precinct and updating the tallies. A skeleton of the program is in the file Election.java. Open a copy of the program in your text editor and do the following.

(1) Add the code to control the loop. You may use either a while loop or a do...while loop. The loop must be controlled by asking the user whether or not there are more precincts to report (that is, more precincts whose votes need to be added in). The user should answer with the character y or n though your program should also allow uppercase repsonses. The variable response (type String) has already been declared.
(2) Add the code to read in the votes for each candidate and find the total votes. Note that variables have already been declared for you to use. Print out the totals and the percentages after the loop.
(3) Test your program to make sure it is correctly tallying the votes and finding the percentages AND that the loop control is correct (it goes when it should and stops when it should).
(4) The election officials want more information. They want to know how many precincts each candidate carried (won). Add code to compute and print this. You need three new variables: one to count the number of precincts won by Polly, one to count the number won by Ernest, and one to
count the number of ties. Test your program after adding this code.
3. The for statement

The Coin class from Listing 4.2 in the text is in the file Coin.java. Copy it to your directory, then write a program to find the length of the longest run of heads in 100 flips of the coin. A skeleton of the program is in the file Runs.java. To use the Coin class you need to do the following in the program:

(1) Create a coin object.
(2) Inside the loop, you should use the flip method to flip the coin, the toString method (used implicitly) to print the results of the flip, and the getFace method to see if the result was HEADS. Keeping track of the current run length (the number of times in a row that the coin was HEADS) and the maximum run length is an exercise in loop techniques!
(3) Print the result after the loop.
实验性质：设计性

实验学时：2

实验目的与要求：

掌握switch, do ,for语句的使用

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

各种语句的使用场景？

实验项目七

实验名称：Object-Oriented Design

实验内容：

1．Parameter Passing

The file ChangingPeople.java contains a program that illustrates parameter passing. The program uses Person objects defined in the file Person.java. Do the following:

(1) Trace the execution of the program using diagrams similar to those in Figure 6.5 of the text (which is a trace of the program in Listings 6.15–6.17). Also show what is printed by the program.
(2) Compile and run the program to see if your trace was correct.
(3) Modify the changePeople method so that it does what the documentation says it does, that is, the two Person objects passed in as actual parameters are actually changed.
2. Interfaces

(1) Write a class Compare3 that provides a static method largest. Method largest should take three Comparable parameters and return the largest of the three (so its return type will also be Comparable). Recall that method compareTo is part of the Comparable interface, so largest can use the compareTo method of its parameters to compare them.
(2) Write a class Comparisons whose main method tests your largest method above.

• First prompt the user for and read in three strings, use your largest method to find the largest of the three strings, and print it out. (It’s easiest to put the call to largest directly in the call to println.) Note that since largest is a static method, you will call it through its class name, e.g., Compare3.largest(val1, val2, val3).
• Add code to also prompt the user for three integers and try to use your largest method to find the largest of the three integers. Does this work? If it does, it’s thanks to autoboxing, which is Java 1.5’s automatic conversion of ints to Integers. You may have to use the -source 1.5 compiler option for this to work.
3. Overloading

File Account.java contains a definition for a simple bank account class with methods to withdraw, deposit, get the balance and account number, and return a String representation. Note that the constructor for this class creates a random account number. Save this class to your directory and study it to see how it works. Then modify it as follows:

(1) Overload the constructor as follows:

• public Account (double initBal, String owner, long number) - initializes the balance, owner, and account number as specified

• public Account (double initBal, String owner) - initializes the balance and owner as specified; randomly generates the account number.

• public Account (String owner) - initializes the owner as specified; sets the initial balance to 0 and randomly generates the account number.

(2) Overload the withdraw method with one that also takes a fee and deducts that fee from the account.

File TestAccount.java contains a simple program that exercises these methods. Save it to your directory, study it to see what it does, and use it to test your modified Account class.
4. Static

File Account.java (see A Flexible Account Class exercise) contains a definition for a simple bank account class with methods to withdraw, deposit, get the balance and account number, and return a String representation. Note that the constructor for this class creates a random account number. Save this class to your directory and study it to see how it works.

Now modify it to keep track of the total number of deposits and withdrawals (separately) for each day, and the total amount deposited and withdrawn. Write code to do this as follows:

(1) Add four private static variables to the Account class, one to keep track of each value above (number and total amount of deposits, number and total of withdrawals). Note that since these variables are static, all of the Account objects share them. This is in contrast to the instance variables that hold the balance, name, and account number; each Account has its own copy of these. Recall that numeric static and instance variables are initialized to 0 by default.
(2) Add public methods to return the values of each of the variables you just added, e.g., public static int getNumDeposits().
(3) Modify the withdraw and deposit methods to update the appropriate static variables at each withdrawal and deposit
(4) File ProcessTransactions.java contains a program that creates and initializes two Account objects and enters a loop that allows the user to enter transactions for either account until asking to quit. Modify this program as follows:
a. After the loop, print the total number of deposits and withdrawals and the total amount of each. You will need to use the Account methods that you wrote above. Test your program.
b. Imagine that this loop contains the transactions for a single day. Embed it in a loop that allows the transactions to be recorded and counted for many days. At the beginning of each day print the summary for each account, then have the user enter the transactions for the day. When all of the transactions have been entered, print the total numbers and amounts (as above), then reset these values to 0 and repeat for the next day. Note that you will need to add methods to reset the variables holding the numbers and amounts of withdrawals and deposits to the Account class. Think: should these be static or instance methods?
5. GUI Layouts

Files Telephone.java and TelephonePanel.java contain the skeleton for a program to lay out a GUI that looks like telephone keypad with a title that says “Your Telephone!!”. Save these files to your directory. Telephone.java is complete, but TelephonePanel.java is not.

(1) Using the comments as a guide, add code to TelephonePanel.java to create the GUI. Some things to consider:

a. TelephonePanel (the current object, which is a JPanel) should get a BorderLayout to make it easy to

separate the title from the keypad. The title will go in the north area and the keypad will go in the center area. The other areas will be unused.

b. You can create a JLabel containing the title and add it directly to the north section of the TelephonePanel. However, to put the keypad in the center you will first need to create a new JPanel and add the keys (each a button) to it, then add it to the center of the TelephonePanel. This new panel should have a 43 GridLayout.

c. Your keypad should hold buttons containing 1 2 3, 4 5 6, 7 8 9, * 0 # in the four rows respectively. So you’ll create a total of 12 buttons.

(2) Compile and run Telephone.java. You should get a small keypad and title. Grow the window (just drag the corner) and see how the GUI changes - everything grows proportionately.

(3) Note that the title is not centered, but it would look nicer if it were. One way to do this is to create a new JPanel, add the title label to it, then add the new JPanel to the north area of the TelephonePanel (instead of adding the label directly).This works because the default layout for a JPanel is a centered FlowLayout, and the JPanel itself will expand to fill the whole north area. Modify your program in this way so that the title is centered.
实验性质：综合性

实验学时：2

实验目的与要求：

(1) 掌握值传递和对象传递；

(2) 掌握接口的使用；

(3) 掌握方法重载；

(4) 掌握GUI布局

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

(1) 接口用在哪里？

(2) 如何重载方法？

融合点：社会主义、特色社会主义、新时代特色社会主义概念辨析

实验项目八

实验名称：Arrays

实验内容：

1．One-Dimensional Arrays

File Sales.java contains a Java program that prompts for and reads in the sales for each of 5 salespeople in a company. It then prints out the id and amount of sales for each salesperson and the total sales. Study the code, then compile and run the program to see how it works. Now modify the program as follows:

(1) Compute and print the average sale. (You can compute this directly from the total; no loop is necessary.)
(2) Find and print the maximum sale. Print both the id of the salesperson with the max sale and the amount of the sale, e.g.,“Salesperson 3 had the highest sale with $4500.” Note that you don’t need another loop for this; you can do it in the same loop where the values are read and the sum is computed.
(3) Do the same for the minimum sale.
(4) After the list, sum, average, max and min have been printed, ask the user to enter a value. Then print the id of each salesperson who exceeded that amount, and the amount of their sales. Also print the total number of salespeople whose sales exceeded the value entered.
(5) The salespeople are objecting to having an id of 0—no one wants that designation. Modify your program so that the ids run from 1-5 instead of 0-4. Do not modify the array—just make the information for salesperson 1 reside in array location 0, and so on.
(6) Instead of always reading in 5 sales amounts, at the beginning ask the user for the number of sales people and then create an array that is just the right size. The program can then proceed as before.
2. Arrays of Objects

In this exercise you will complete a class that implements a shopping cart as an array of items. The file Item.java contains the definition of a class named Item that models an item one would purchase. An item has a name, price, and quantity (the quantity purchased). The file ShoppingCart.java implements the shopping cart as an array of Item objects.

(1) Complete the ShoppingCart class by doing the following:

a. Declare an instance variable cart to be an array of Items and instantiate cart in the constructor to be an array holding capacity Items.

b. Fill in the code for the increaseSize method. Your code should be similar to that in Listing 7.8 of the text but instead of doubling the size just increase it by 3 elements.

c. Fill in the code for the addToCart method. This method should add the item to the cart and update the totalPrice instance variable (note this variable takes into account the quantity).
d. Compile your class.

(2) Write a program that simulates shopping. The program should have a loop that continues as long as the user wants to shop. Each time through the loop read in the name, price, and quantity of the item the user wants to add to the cart. After adding an item to the cart, the cart contents should be printed. After the loop print a “Please pay ...” message with the total price of the items in the cart.
3. Command Line Arguments

As discussed in Section 7.4 of the text book, when you run a Java program called Foo, anything typed on the command line after “java Foo” is passed to the main method in the args parameter as an array of strings.

(1) Write a program Average.java that just prints the strings that it is given at the command line, one per line. If nothing is given at the command line, print “No arguments”.
(2) Modify your program so that it assumes the arguments given at the command line are integers. If there are no arguments, print a message. If there is at least one argument, compute and print the average of the arguments. Note that you will need to use the parseInt method of the Integer class to extract integer values from the strings that are passed in. If any non-integer values are passed in, your program will produce an error, which is unavoidable at this point.
(3) Test your program thoroughly using different numbers of command line arguments.
4. Two-Dimensional Arrays

One interesting application of two-dimensional arrays is magic squares. A magic square is a square matrix in which the sum of every row, every column, and both diagonals is the same. Magic squares have been studied for many years, and there are some particularly famous magic squares. In this exercise you will write code to determine whether a square is magic.

File Square.java contains the shell for a class that represents a square matrix. It contains headers for a constructor that gives the size of the square and methods to read values into the square, print the square, find the sum of a given row, find the sum of a given column, find the sum of the main (or other) diagonal, and determine whether the square is magic. The read method is given for you; you will need to write the others. Note that the read method takes a Scanner object as a parameter.

File SquareTest.java contains the shell for a program that reads input for squares from a file named magicData and tells whether each is a magic square. Following the comments, fill in the remaining code. Note that the main method reads the size of a square, then after constructing the square of that size, it calls the readSquare method to read the square in. The readSquare method must be sent the Scanner object as a parameter.

You should find that the first, second, and third squares in the input are magic, and that the rest (fourth through seventh) are not. Note that the -1 at the bottom tells the test program to stop reading.
实验性质：设计性

实验学时：2

实验目的与要求：

(1) 掌握数组的定义和使用；

(2) 掌握数组便利方式，以及数组作为参数传递的执行过程；

(3) 掌握对象数组的使用；

(4) 掌握二维数组的定义与遍历。

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

数组作为参数传递的时候和普通数值的区别？
实验项目九

实验名称：Inheritance

实验内容：

1. Inheritance

File IntList.java contains code for an integer list class. Save it to your directory and study it; notice that the only things you can do are create a list of a fixed size and add an element to a list. If the list is already full, a message will be printed. File ListTest.java contains code for a class that creates an IntList, puts some values in it, and prints it. Save this to your directory and compile and run it to see how it works.

Now write a class SortedIntList that extends IntList. SortedIntList should be just like IntList except that its elements should always be in sorted order from smallest to largest. This means that when an element is inserted into a SortedIntList it should be put into its sorted place, not just at the end of the array. To do this you'll need to do two things when you add a new element:

• Walk down the array until you find the place where the new element should go. Since the list is already sorted you can just keep looking at elements until you find one that is at least as big as the one to be inserted.

• Move down every element that will go after the new element, that is, everything from the one you stop on to the end. This creates a slot in which you can put the new element. Be careful about the order in which you move them or you'll overwrite your data!

Now you can insert the new element in the location you originally stopped on.

All of this will go into your add method, which will override the add method for the IntList class. (Be sure to also check to see if you need to expand the array, just as in the IntList add method.) What other methods, if any,do you need to override?

To test your class, modify ListTest.java so that after it creates and prints the IntList, it creates and prints a SortedIntList containing the same elements (inserted in the same order). When the list is printed, they should come out in sorted order.
2. Overriding the equals Method

File Player.java contains a class that holds information about an athlete: name, team, and uniform number. File ComparePlayers.java contains a skeletal program that uses the Player class to read in information about two baseball players and determine whether or not they are the same player.

(1) Fill in the missing code in ComparePlayers so that it reads in two players and prints “Same player” if they are the same, “Different players” if they are different. Use the equals method, which Player inherits from the Object class, to determine whether two players are the same. Are the results what you expect?
(2) The problem above is that as defined in the Object class, equals does an address comparison. It says that two objects are the same if they live at the same memory location, that is, if the variables that hold references to them are aliases. The two Player objects in this program are not aliases, so even if they contain exactly the same information they will be “not equal.” To make equals compare the actual information in the object, you can override it with a definition specific to the class. It might make sense to say that two players are “equal” (the same player) if they are on the same team and have the same uniform number.
a. Use this strategy to define an equals method for the Player class. Your method should take a Player object and return true if it is equal to the current object, false otherwise.
b. Test your ComparePlayers program using your modified Player class. It should give the results you would expect.
实验性质：综合性

实验学时：2

实验目的与要求：

(1) 掌握继承的定义和使用；

(2) 掌握方法重写；

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

方法重写如何应用？

融合点：传承的作用，传承的内容，传承中的创新，对应于继承及方法重写等概念。

实验项目十

实验名称：Polymorphism

实验内容：

Polymorphism via Inheritance

The files Firm.java, Staff.java, StaffMember.java, Volunteer.java, Employee.java, Executive.java, and

Hourly.java are from Listings 9.1 - 9.7 in the text. The program illustrates inheritance and polymorphism. In this exercise you will add one more employee type to the class hierarchy (see Figure 9.1 in the text). The employee will be one that is an hourly employee but also earns a commission on sales. Hence the class,which we’ll name Commission, will be derived from the Hourly class.

Write a class named Commission with the following features:

It extends the Hourly class.
(2) It has two instance variables (in addition to those inherited): one is the total sales the employee has made (type double) and the second is the commission rate for the employee (the commission rate will be type double and will represent the percent (in decimal form) commission the employee earns on sales (so .2 would mean the employee earns 20% commission on sales)).
(3) The constructor takes 6 parameters: the first 5 are the same as for Hourly (name, address, phone number,social security number, hourly pay rate) and the 6th is the commission rate for the employee. The constructor should call the constructor of the parent class with the first 5 parameters then use the 6th to set the commission rate.
(4) One additional method is needed: public void addSales (double totalSales) that adds the parameter to the instance variable representing total sales.
(5) The pay method must call the pay method of the parent class to compute the pay for hours worked then add to that the pay from commission on sales. (See the pay method in the Executive class.) The total sales should be set back to 0 (note: you don’t need to set the hours Worked back to 0—why not?).
(6) The toString method needs to call the toString method of the parent class then add the total sales to that.
To test your class, update Staff.java as follows:

Increase the size of the array to 8.
(2) Add two commissioned employees to the staffList—make up your own names, addresses, phone numbers and social security numbers. Have one of the employees earn $6.25 per hour and 20% commission and the other one earn $9.75 per hour and 15% commission.

For the first additional employee you added, put the hours worked at 35 and the total sales $400; for the second, put the hours at 40 and the sales at $950.

Compile and run the program. Make sure it is working properly.
实验性质：综合性

实验学时：2

实验目的与要求：

掌握多态的实现方式

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

为什么要使用多态？

融合点：开放型世界经济建设可以有不同形态实现

实验项目十一

实验名称：Exceptions

实验内容：

1．Exceptions(try-catch)

File ParseInts.java contains a program that does the following:

Prompts for and reads in a line of input
b. Uses a second Scanner to take the input line one token at a time and parses an integer from each token as it is extracted.
c. Sums the integers.
d. Prints the sum.

Save ParseInts to your directory and compile and run it. If you give it the input

10 20 30 40

it should print

The sum of the integers on the line is 100.

Try some other inputs as well. Now try a line that contains both integers and other values, e.g.,

We have 2 dogs and 1 cat.

You should get a NumberFormatException when it tries to call Integer.parseInt on “We”, which is not an integer. One way around this is to put the loop that reads inside a try and catch the NumberFormatException but not do anything with it. This way if it’s not an integer it doesn’t cause an error; it goes to the exception handler, which does nothing. Do this as follows:

Modify the program to add a try statement that encompasses the entire while loop. The try and opening {should go before the while, and the catch after the loop body. Catch a NumberFormatException and have an empty body for the catch.
b. Compile and run the program and enter a line with mixed integers and other values. You should find that it stops summing at the first non-integer, so the line above will produce a sum of 0, and the line “1 fish 2 fish” will produce a sum of 1. This is because the entire loop is inside the try, so when an exception is thrown the loop is terminated. To make it continue, move the try and catch inside the loop. Now when an exception is thrown, the next statement is the next iteration of the loop, so the entire line is processed. The dogs-and-cats input should now give a sum of 3, as should the fish input.
2. Exceptions(Throwing Exceptions)

File Factorials.java contains a program that calls the factorial method of the MathUtils class to compute the factorials of integers entered by the user. Save these files to your directory and study the code in both, then compile and run Factorials to see how it works. Try several positive integers, then try a negative number. You should find that it works for small positive integers (values < 17), but that it returns a large negative value for larger integers and that it always returns 1 for negative integers.

(1) Returning 1 as the factorial of any negative integer is not correct—mathematically, the factorial function is not defined for negative integers. To correct this, you could modify your factorial method to check if the argument is negative, but then what? The method must return a value, and even if it prints an error message, whatever value is returned could be misconstrued. Instead it should throw an exception indicating that something went wrong so it could not complete its calculation. You could define your own exception class, but there is already an exception appropriate for this situation—IllegalArgumentException, which extends RuntimeException. Modify your program as follows:
a. Modify the header of the factorial method to indicate that factorial can throw an
IllegalArgumentException.
b. Modify the body of factorial to check the value of the argument and, if it is negative, throw an
IllegalArgumentException. Note that what you pass to throw is actually an instance of the
IllegalArgumentException class, and that the constructor takes a String parameter. Use this parameter to be specific about what the problem is.
c. Compile and run your Factorials program after making these changes. Now when you enter a negative number an exception will be thrown, terminating the program. The program ends because the exception is not caught, so it is thrown by the main method, causing a runtime error.
d. Modify the main method in your Factorials class to catch the exception thrown by factorial and print an appropriate message, but then continue with the loop. Think carefully about where you will need to put the try and catch.
(2) Returning a negative number for values over 16 also is not correct. The problem is arithmetic overflow—the factorial is bigger than can be represented by an int. This can also be thought of as an IllegalArgumentException—this factorial method is only defined for arguments up to 16. Modify your code in factorial to check for an argument over 16 as well as for a negative argument. You should throw an IllegalArgumentException in either case, but pass different messages to the constructor so that the problem is clear.
3. File Input and Output

Write a program that prompts the user for a filename, then opens a Scanner to the file and copies it, a line at a time, to the standard output. If the user enters the name of a file that does not exist, ask for another name until you get one that refers to a valid file. Some things to consider:

• Remember that you can create a Scanner from a File object, which you can create from the String

representing the filename.

• The Scanner constructor that takes a File may throw a FileNotFoundException -- this is how you will

know if the file does not exist. Think carefully about how to use the try/catch structure in combination

with a loop that asks for a new filename if the current file does not exist.

• Remember that the scope of a variable declared inside a try is the try itself -- it does not extend to the

following code. Furthermore, the compiler knows that an initialization that occurs inside a try may or

may not get executed, as the try may be thrown out of first. So any variable that you will want to use

both in and after the try must be declared and initialized before the try.
实验性质：验证性

实验学时：2

实验目的与要求：

(1) 掌握异常捕捉和抛出的实现方式；

(2) 掌握常见输入输出异常；

实验条件：

(1) CPU i5及以上，内存4G及以上；

(2) 网络顺畅；

(3) 安装jdk、eclipse或Myeclipse

研究与思考：

(1) 如何自定义异常？

(2) 异常抛出的级联处理方式？

融合点：从风险处理机制，引导学生理解不同的异常处理机制

四、考核方式

采用考查方式

实验成绩由实验报告成绩决定

单份实验报告成绩(100%)=实验规范(20%)+实验内容(60%)+实验结论总结(20%)

总体实验成绩=单份实验报告成绩和/实验次数

五、推荐实验教材和教学参考书

John Lewis，William Loftus,Java software solutions: foundations of

program design, Pearson Educaiton,2012.

配套实验手册

六、其他需说明的

大纲修订人：尹华 修订日期：2022.1.2

大纲审定人：王志坚 审定日期：2022.1.6

